Navigation

AG Remote Sensing & GIS (Braun)

Our research focuses on aerial and satellite image analysis as well as geographic information systems. We use timeseries of optical earth observation systems in various spatialand spectral resolutions, from synthetic aperture radar systems(SAR) as well as other imaging and non-imaging sensors incombination with field measurements.

Our applications are in the field of glaciology and the effects ofclimate change on the cryosphere, including changes in icedynamics, glacier mass balance and contributions to sea level orproperties of snow and ice. Analyzes of land use and land coverchange are also important components of our work, such asapplications in the field of nature conservation management,biodiversity research or studies on ecosystem functions.

Current projects

belspo

Funding period: 2016-2018

Project team: Hannes Feilhauer, Sandra Skowronek, and Iris Unberath

Species invasions are among the most important threats to the functioning of the Earth’s ecosystems. Invasion biologists have mainly focused so far on the effects that invasive plant species have on native populations and communities. The response of ecosystem functioning to invasion has received considerably less attention. In INPLANT we explore the capability of imaging spectroscopy data to define optically distinguishable functional types (‘optical types’) as a means to quantify the effects of invasive plants on ecosystem functioning. Spectroscopy data allow to characterize the canopy biochemistry, as such allowing a discrimination between subtle physiological differences among plant species, and enable a straightforward link to ecosystem processes. The optical types are expected to outperform, or at least complement, conventional functional trait approaches when predicting changes in ecosystem functioning through plant invasion. The principal idea behind INPLANT is that invasive plant species may have physical-chemical properties that differ from native species. These physical-chemical properties can be directly linked to ecosystem functioning changes following invasions, and they can be largely quantified based on the optical reflectance spectra of the species, which are detectable due to recent developments in remote sensing technology.

Project partners: KU Leuven, Leuven, Belgium

Funding period: 2015 – 2017 (resp.)

This project devotes itself to the question, what is the change in height by the densification of firn.

The test area is the Vestfonna Ice Cap (VIC) on the island Nordaustlandet in the north east of Svalbard. The VIC is ~2400 km² in size and has a dome like shape with well defined outlet glaciers. Further test sites with a magnificent in situ measurement archive are welcome.

The propulsion are inaccuracies introduced during the conversion between measured volume change into glacier mass changes. Until now, we calculated glacier mass balances with a constant conversion factor of 850 kg m-3 or the density of ice (917 kg m-3) for entire glacier basins, altitude dependent density variations and firn layer thickness were unnoticed this way. Or we used constant densities for the ablation (900 kg m-3) and accumulation (600 kg m-3) areas, whereby not homogeneous density variations with varying climate conditions were not considered. A decline of the accuracy in the amount of mass change is the consequence. This inaccuracy is a systematic component of uncertainty in geodetically determined mass balances, and thus need to be addressed for accuracy improvement.
The aim is to develop a firn elevation change model (FecMo) Surface Energy Balance (SEB) parameters (e.g. radiation, temperature, wind speed, precipitation, cloud cover fraction). At the moment the model is based on the COupled Snowpack and Ice surface energy and MAss balance glacier model (COSIMA) developed by Huintjes et al. (2015) (link to the open access Git repository). Latter model consists of a SEB model and an integrated subsurface model. Beside the surface energy component, the model has a discrete layer based subsurface structure.

To remove access restrictions by proprietary software, COSIMA-FecMo is developed in the programming language Python. Simple configuration and site specific initialization options will be implemented, additionally it will be possible to replace entire Py-modules (e.g. precipitation, albedo, densification) if more accurate modules are available. The python model will be offered to the scientific community.

FecMo will be forced by climate reanalysis data (e.g. Modèle Atmosphérique Régional (MAR), ERA-interim data from the ECMWF). The forcing will be validated by a AWS network on and around the ice cap. One part of AWS data was recorded during the International Polar Year Project Kinnvika (IPY Kinnvika) between 2007 and 2010, another part is free of charge from the MET Norway (eKlima) and the UNIS. FecMo will be calibrated by in situ measurements from the IPY Kinnvika on mass balance components (ablation, snow package character, firn properties).

The project combines remote sensing data (TanDEM-X, ICESat, CryoSat-2, Sentinel-1A, Aster) and methods (DInSAR, geodetic approach), climate data reanalysis and downscaling (MAR/ERA-Interim) and the extensive analysis of the IPY Kinnvika archive (GPR, snow pit, stake and AWS measurements, GPS and DGPS profiles).

At the end of our study, we will be able to derive layer based firn densities and to estimate firn densification on glaciers and ice caps to retrieve the amount of elevation change that is attributed to compaction.

Project members: Björn Saß

Bibliography:

Huintjes E, Sauter T, Schröter B, et al (2015) Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arct Antarct Alp Res 47:573–590. doi: 10.1657/AAAR0014-073

This work is funded by the German Environmental Foundation Scholarship Program (Deutsche Bundesstiftung Umwelt, DBU).

DBU_Logo_en

 

Climate reconstruction, ice dynamics and geodetic glacier mass balances in the southern Andes (2015-2018, BMBF-WTZ, FKZ 01DN15020)
Subproject in dt-chil. Verbund GABY-VASA: Responses of Glaciers, Biosphere and Hydrology to Climate Change and Climate change across the Southern Andes

Modellierung der heutigen Gletscherdynamik auf Svalbard – von der Bestimmung der Oberflächengeschwindigkeiten bis hin zur Berechnung einer strömungskonsistenten Untergrundkarte

Im Laufe des vorigen Jahrhunderts betrug die globale Erwärmung an der Erdoberfläche ca. 0.7°C. Da das Klimasystem einen Verstärkungseffekt in hohen Breiten aufweist, war diese Erwärmung stärker ausgeprägt in der Polarregion. Eine Folgeerscheinung ist der allgemeine Rückgang der Gletscher auf Svalbard im vorigen Jahrhundert. In den letzten Jahrzehnten hat sich die Dickenabnahme im Süden allerdings dramatisch beschleunigt. Diese jüngste Entwicklung lässt sich jedoch nicht auf die gesamte Arktis übertragen, denn das Svalbard Archipel ist klimatisch gesehen, besonderen Gegebenheiten unterworfen. Untypisch für diese Breiten, erfährt es ein eher warmes und wechselhaftes Klima. Aus diesem Grunde wird die Gletscherentwicklung auf Svalbard oft als Vorbote für bevorstehende Änderungen in den anderen arktischen Regionen gesehen.Im Vergleich zu anderen Teilen der Arktis sind auf Svalbard sowohl Gletscherausdehnungen und Geometrieänderung der letzten Jahrzehnte gut dokumentiert. Deren Interpretation mit Hinblick auf den Klimawandel ist allerdings  behindert, da geometrische Veränderungen durch die klimatische Oberflächenmassenbilanz und Eisflussdivergenzen verursacht werden. Letztere sind bestimmt durchdie Geometrie und den Eisfluss, wodurch sie nicht zwangsläufig direkt an klimatologische Veränderungen gekoppelt sind. Da es jedoch nur spärliche und meist asynchrone Geschwindgkeits- und Mächtigkeitsmessungen gibt, ist eine Quantifizierung des dynamischen Beitrags zu Gletscherveränderungen bis zum heutigen Tage weitestgehend unmöglich. Des Weiteren haben wir dadurch nur eine sehr vage Vorstellung des jährlichen Eisausflusses durch Eiskalben an den marinen Gletscherfronten. Dieser Eisausfluss erklärt vermutlich einen nicht unerheblichen Teil der jährlichen Eismassenbilanz des Archipels.Das Ziel dieses Forschungsantrags ist eine fundierte Bestimmung der dynamischen Komponente der Gletscherentwicklung auf Svalbard. Zu diesem Zweck werden flächendeckende Oberflächengeschwindigkeiten aus Fernerkundungsdaten abgeleitet, welche wiederum benötigt werden für eine Rekonstruktion der basalen Topographie unter der Eisdecke Svalbards.

Die geplante Rekonstruktion bedient sich des fundamentalen Prinzips der Massenerhaltung, liefert damit eine strömungskonsistente Karte der Eismächtigkeiten und ist bereits verfügbar in unserem Eismodell. Die Rekonstruktion ermöglicht die Berechnung der Flussdivergenz und somit eine bessere Interpretation der jüngsten Veränderungen angesichts der aktuellen Erwärmung in der Arktis. Darüber hinaus, können bisherige Extrapolationversuche zur Abschätzung des Gesamteisvolumens und des Gesamteisausflusses auf Svalbard ersetzt werden durch diese physikalisch fundierte Rekonstruktion. Die abgeleitete Bodentopographie ist im Einklang mit dem Eisströmungsfeld und wird vielen Anwendungen von Eisflussmodellen zugute kommen. Mit unserem Flussmodell werden wir regionale Unterschiede in der Bedeutung basalen Gleitens auf den Gesamteisfluss ableiten.

 

Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 274939856

Remote Sensing of Mountain Glaciers

Assessment of essential climate variables to support international initiatives
– Development and refinement of methods, exemplarily applied in the tropical Andes

Methodenentwicklung und -verfeinerungen mit


GEKKO Gebirgsgletscher Essentielle Klimavariablen der KryOsphere

The glaciers of the tropical Andes represent an important water resource, but they are strongly affected by climate change. The regional water supply depends on the melt water and consequently on the mass balance of the glaciers. The goal of this project is to quantify glacier changes in the tropical Andes by analyzing different remote sensing data sets (SAR, optical imagery). Various glaciological variables (e.g., glacier extend, surface type, equilibrium line altitude, surface velocity) and their changes are going to be determined. Geodetic glacier mass balance is going to be derived from TanDEM-X and SRTM elevation models. New and upcoming Sensors like Sentinel-1&2 will be integrated in the analysis to estimate their capabilities for glacier monitoring. The results will provide essential information of the current state and ongoing changes of glaciers in the tropical Andes. An additional outcome is going to be a refined monitoring system for mountain glaciers.

Project team

Matthias Braun, Thorsten Seehaus

 

 

 

Founded by DLR & BMWI

 bmwi

 

 

SATELLITE – A stochastic eStimATe of sEa Level contribution from gLaciers and Ice caps using satellite remoTe sEnsing

Project staff: Christian Sommer, Philipp Malz, , Matthias Braun

The project aims at deriving a stochastic global sampling for ice volume and mass loss of glaciers and ice caps based on repeat satellite observations. For this purpose we will develop a respective sampling strategy. We propose two observation intervals: a period 2000-2012 between 56°S and 60°N and a second interval covering 2012 to 2014 or later (globally) in order to quantify potential changes in ice volume/mass loss rates.

Geodetic glacier mass balances provided for on a statistical representative sample of glaciers and ice caps will enable us to quantitatively compare changes and change rates in different regions of the world using the same methodology. We will also tackle the question on how comprehensive such sampling needs to be. We will mainly base our analysis on data from the German satellite mission TanDEM-X and integrate it with observations and data products from other sources (like SRTM, ASTER, Landsat, ICESat, WGMS records, field and airborne measurements). The German TanDEM-X satellite mission operated since 2010 provides a unique database with its bi-static satellite configuration.

 

Funding period : 2016-2019

Website: www.spp-sealevel.de

Funded by

IMProved gEodetiC glaCier mAss BaLancE measurements by integrating remote sensing, surface mass balance and firn compaction modelling – a case study from James Ross Island, Antarctica (IMPECCABLE)

Duration: 2016-2019

The aim of this project is an improvement of current estimates of glacier mass loss at James Ross island (JRI) on the east coast of the Antarctic Peninsula by comparing geodetic and flux approaches.

Glaciers draining into the ice shelves responded with flow acceleration and increased ice discharge to ice shelf disintegration (e.g. Larsen A/B) in the last years. There are still many uncertainties in mass balance modelling e.g. due to neglecting mass loss due to calving, unclear grounding line position, as well as errors in measured ice-thickness or conversion from volume to mass. Therefore, the differences between different models are not negligible and in situ measurements for validation are necessary.

This projects will try to overcome these limitations by the integration of the following measurements into the model creation:

  • In situ surface mass balance measurements, installation of two automatic weather stations and time lapse cameras on Gourdon Glacier

  • Static and kinematic differential as well as continuous GNSS measurements on JRI plateau and Gourdon Glacier

  • Ground Penetrating Radar surveys by helicopter

  • Elevation and volume change measurements by DinSAR

  • Ice dynamics from repeat TerraSAR-X acquisitions

Project-Members: Stefan Lippl, Prof. Dr. Matthias Braun

Project-Partners: Dr. Daniel Nyvlt, Dr. Kamil Laska, Dr. Zdenek Stachon (Masaryk University, Brno), Dr. Zbynek Engel (Carles University, Prague), Ing. Sebastian Marinsek (Instituto Antártico Argentino)

Founded by DFG under number BR2105/13-1 within the czech-german collaborative candidacy 2015

GROCE (TP 7): detection of the grounding line and supra-glacial melt water at the 79° glacier, Greenland

Project staff: Philipp Hochreuther, Matthias Braun

The subproject will detect the grounding line as well as the supra-glacial meltwater ponds in its spatial and temporal variation. Hereto, data of various national and european SAR systems, like TerraSAR-X and TandDEM-X, COSMO-Skymed, Sentinel-1 as well as archived data of  ERS-1/2 and ENVISAT SAR will be used. Double-differentiated radar interferograms enable the detection of the grounding line at different points in time. To map the melt dynamics and the supra-glacial lakes, evaluation algorithms will be fitted and further developed. These assessments are supported by the analyses of optical satellite data.  Herefrom, we will especially estimate the depth and volume of the meltwater ponds and generate highly resolved albedo maps. Main data sources for these analyses are the european Sentinel-2, as well as the Landsat mission. Data products from the more coarsely resolved MODIS time series will completement these analyses.

Project partners:

Laufzeit: 2017 – 2020

Web site: www.groce.de

Funded by

 


Completed Projects

EU BiodivERsA, DFG FE 1331/3-1

Funding period: 2014-2017

Project team: Hannes Feilhauer, Sandra Skowronek

Invasive moss species Campylopus introflexus in the dunes of Sylt, Germany

Biodiversity conservation includes the development of warning and rapid response systems for biological invasions and urges investigations of their impacts on ecosystem function and services. In this context, the systematic, objective, and synoptic view on Earth of remote sensing systems offers a great opportunity to target biological invasion and their impact across various spatial and temporal scales. Within DIARS we aim to

1. characterize the ecosystem impact of invasive plant species through the combined use of field and remotely sensed data.

2. support monitoring, prediction of spread and risk assessment of invasive plant species as preconditions for management measures and mitigation.

For this purpose, we analyse and map the local distribution of the invasive species Campylopus introflexus, Prunus serotina and Oxalis pes-caprae and their impact on ecosystems in Germany and France.

 

Project website: DIARS

 

Project partners:

  • Carnegie Department of Global Ecology, Stanford, CA, USA
  • Fondazione Edmund Mach, San Michele all’Adige, Italy
  • KIT, Karlsruhe, Germany
  • KU Leuven, Leuven, Belgium
  • U de Picardie Jules Vernes, Amiens, France
  • Vito, Mol, Belgium

 

Gefördert durch die

DFG FE 1331/2-1

Funding period: 2013-2014

Project team: Hannes Feilhauer

AISA Dual data of the CaTReS study site (RGB – 734, 641, 549 nm)

Maps of vegetation patterns such as spatial variation in floristic composition, plant traits and plant functional types are required in ecology, ecosystem modelling and nature conservation. One frequently applied approach to generate these maps relies on imaging spectroscopy. In this approach, statistical relationships between a vegetation sample and the corresponding canopy reflectance are quantified and subsequently applied onto the imagery.

Although several successful examples of such applications exist, fundamental questions regarding the causal relations between vegetation patterns and canopy reflectance are still open. In particular the role of canopy optical traits remains poorly understood. Canopy optical traits determine the reflectance signal of vegetation and include canopy biochemistry, morphological and structural properties. CaTReS aims to test the qualitative and quantitative contribution of these traits to remote sensing of vegetation patterns in a test site in Southern Bavaria.

 

Gefördert durch die

DFG-Priority Programme 1158 Antarctic Research

BR2105/8-1

Funding period: 2009-2014 (completed)

This project aims to gain understanding of ongoing and potential changes of Wilkins and GeorgeVI ice shelves on the south-western Antarctic Peninsula. Both are located in an area of the supposed climatic limit of viability of ice shelves and have already shown considerable ice front retreat. The break-up events in 2008 and 2009 on Wilkins Ice Shelf exemplified their potential of disintegration.

Within a multi-institutional, interdisciplinary approach including remote sensing (FAU Erlangen-Nürnberg), modeling of the ice dynamics (Alfred-Wegener-Institut) and fracture mechanics (TU Kaiserslautern), we aim to improve the understanding of the impacts of temperature increase on ice shelf stability.

The remote sensing component includes the mapping of surface structures and fracture development over time, as well as the derivation of surface velocity fields by SAR interferometry and feature tracking for the Wilkins Ice Shelf, which are required as input datasets for modeling of fracture and ice dynamics. For this purpose, we use multi-temporal optical and SAR imagery (Alos Palsar, TerraSAR-X, ERS, ENVISAT). Further work tasks include the investigation of ice thickness changes based on altimetry data and the mapping of the grounding line using Differential SAR Interferometry. The observed quantities are interpreted in the context of ice dynamics and fracture mechanics.

Project team

Matthias Braun, Melanie Rankl

BayIntAn – Reconstruction of climate at Glaciar Perito Moreno

Funding period: 2014

Klimarekonstruktion am Perito Moreno Gletscher in Patagonien auf Basis von dendro-ökologischen Untersuchungen, meteorologischen Messungen und Fernerkundung
Die Messung verschiedener dendroökologischer Parameter wie Jahrringbreiten, Holzdichte und die Analyse der zeitlichen Variabilität der stabilen Isotope ermöglicht es Rückschlüsse auf vergangene Klimabedingungen zu ziehen, bevor irgendwelche Klimamessungen in der Region gemacht wurden (wir erwarten Aufzeichnungslängen von etwa 200 Jahren). Die dendrochronologischen Zeitreihen werden mit meteorologischen Daten einer automatischen Wetterstation am Südrand des Glaciar Perito Moreno kalibriert, die seit fast zwei Jahrzehnten kontinuierlich aufzeichnet. Dies ermöglicht es, eine Beziehung zwischen den in Baumringen gespeicherten Umweltvariablen und dem lokalen Klima herzustellen. Das ermittelte Klimasignal wird mit dem Gletscherverhalten und der Sensibilität des Gletschers gegenüber klimatischen Veränderungen verknüpft.
Der Perito Moreno ist der einzige Gletscher im Nationalpark Los Glaciares mit fast 2 Jahrzehnten ununterbrochenen meteorologischen Messdaten und einer einzigartigen Lage, um die Jahrringmessungen mit in-situ meteorologischen Beobachtungen zu kalibrieren. Die Baumarten der Gattung Nothofagus oberhalb der rezenten Lateralmoräne garantieren eine sehr starke Verbindung zwischen lokalem Klima und den Baumring Informationen sowie eine lange zeitliche Aufzeichnung. Anschließend an den Standort am Perito Moreno wird entlang des klimatischen Transekts, von feuchteren in trockenere Bedingungen, beprobt – die Standorte innerhalb des Nationalparks repräsentieren feuchte Bedingungen, während die Standorte außerhalb des Parks (nach Osten) trockenere Bedingungen aufweisen.

 

In Kooperation mit Pedro Skvarca, Glaciarium, El Calafate, Argentinien).

 

Anschubfinanzierung des Bayerischen Förderprogramms zur Anbahnung internationaler Forschungskooperationen (BayIntAn), 2014.

 

Gefördert durch:
BAYLAT (Bayerische Hochschulzentrum für Lateinamerika)
BayFor (Bayerische Forschungsallianz)
BayIntAn (Bayerisches Förderprogramm zur Anbahnung internationaler Forschungskooperationen)

 

Projektbeteiligte/ Project team

Björn Saß, Jussi Grießinger, Matthias Braun

 

EU FP7 IRSES

Funding period 2012-2016

IMCONet is an international Research Network that follows an interdisciplinary approach to understand the consequences of Climate Change in coastal Western Antarctica. A Network for Staff Exchange and Training, IMCONet is funded by the Marie Curie Action IRSES (International Research Staff Exchange Scheme) of the 7th Framework Programme of the European Union. The activity brings European, South American and US scientists together to advance climate and (eco-) system change research at the Western Antarctic Peninsula (WAP), a region of recent rapid aerial warming.

IMCONet objectives are

  • to develop predictive climate change and ecosystem models for the whole WAP coastal environment based on existing data sets and data exchange policies;
  • transfer of knowledge between partner countries to enhance collaboration with high quality long-term measuring programs at all 3 stations, to fill present measuring gaps.

IMCONet is the follow-up of the ESF PolarCLIMATE activity IMCOAST, an international research activity that investigated climate change and glacier melting effects on coastal ecosystems at Potter Cove and in Admiralty Bay on King-George Island (Isla 25 de Mayo) in the northern WAP region. Data were generated for different ecosystem compartments (glaciers, coastal run-off and sediment biogeochemistry, pelagic and benthic coastal systems) by interdisciplinary multi-national teams collaborating mainly on-site.

The consortium is coordinated by AWI Bremerhaven; within the project FAU coordinates the WP1 on glacier mass balance.

Project team:

Matthias Braun (FAU), Thorsten Seehaus (FAU), Juliana Costi (FURG/FAU), Ulrike Falk (Uni BN), Jorge Arigony-Neto (FURG), Hernan Sala (IAA), Sebastian Marinsek (IAA), Adrian Silva Busso (IAA)

DFG-Priority Programme 1158 Antarctic Research

BR 2105/9-1

Funding period: 2012-2015

Climate conditions along the Antarctic Peninsula have considerably changed in the last 50 years. The glaciers on the Western Antarctic Peninsula have already shown reactions of change by speed-up and surface lowering. The disintegration of the Larsen-A and B Ice Shelves, the ice shelves in the Larsen Inlet, Prinz-Gustav-Channel and Wordie Ice Shelf have led to a surge-type behaviour of tributary glaciers to which much of the current contribution of Antarctic Peninsula ice to sea level rise is attributed. However, quantifications of mass loss from the peninsula using different observations and methods are still ambiguous.

The aim of our project is on to improve the quantifications of mass loss in the area of the former Northern Larsen-A embayment as well as for Western Antarctic Peninsula glaciers. In order to achieve those goals we analyse time series of satellite data from ERS 1/2, Envisat, Radarsat 1, ALOS PALSAR, TanDEM-X & TerraSAR-X and Rapideye to determine glacier velocity changes for these regions over the last 20 years. Furthermore we generate digital elevation models from TanDEM-X mission data in order to calculate surface elevation changes. Our products are backed up with GNSS ground truth measurements from joint German-Argentine (DNA_IAA)  field campaigns  and laser altimetry done by collaborating partners (Alfred Wegener Institut, Bremerhaven). In an integrated analysis those data sets are linked to achieve a better glaciological understanding of underlying processes and to estimate the ice mass loss at the study region.

Project team

Matthias Braun, Thorsten Seehaus


Gletschermonitoring in Hochasien mittels TanDEM-X InSAR und weiterer Erdbeoachtungssensorik

Projektteam: Matthias Braun, Melanie Rankl, Philipp Malz

Projektlaufzeit: 2015-2017

Übergeordnetes Projektziel ist eine Eignungsanalyse von Daten der TanDEM-X Science Phase sowie die Entwicklung einer Prozessierungskette zur Ableitung geodätischer Massenbilanzen. Zudem sollen Änderungen der Dynamik und  Ausdehnung der Gletscher Hochasiens auf verschiedenen zeitlichen und räumlichen Skalen erfasst werden. Das zu entwickelnde Produkt ist ein validiertes „Methodeninstrumentarium zur Gletscherbeobachtung“, das nicht nur in Hochasien,  sondern auch in anderen Gebirgsregionen zur Beobachtung der dem globalen Klimawandel unterliegenden Gletscher eingesetzt werden kann. Die Innovation liegt in der Bewertung des Potenzials der experimentellen Aufnahmemodi der TanDEM-X Science Phase für die glaziologische Fernerkundung in Bezug zur bisherigen Aufnahmekonfiguration sowie in der Kombination mit glaziologischen Produkten basierend auf Daten verschiedenster Satellitenmissionen. Das  interferometrische Potenzial der Mission und dessen Eignung für steile Hochgebirgstopographien soll systematisch analysiert und Empfehlungen für die weitere Missionsplanung gegeben werden. Am Projektende soll eine verbesserte regionale Aussage zu den Massenänderungen der Gletscher in Hochasien stehen, die z.B. in internationale Berichte wie den IPCC AR6 einfließen kann.

Projektpartner: Prof. Dr. Volker Hochschild, Eberhard-Karls Universität Tübingen

 

gefördert durch:

       

HGF Alliance

Funding period: 2012-2017

The HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA) aims at the development and evaluation of novel bio/geo-physical information products derived from data acquired by a new generation of remote sensing satellites; and their integration in Earth system models for improving understanding and modelling ability of global environmental processes and ecosystem change.

The key objective of the proposed Alliance is to prepare the HGF centers and the national/international science community for the utilisation and integration of bio/geo-physical products provided by the next generation radar remote sensing missions (e.g. Tandem-L) into the study of natural and anthropogenic impact on Earth’s ecosystems by:

  • developing new bio/geo-physical information products from remote sensing data;
  • integrating the new products into Earth system models;
  • improving the understanding and modelling of dynamic processes;
  • providing a unique forum for the education of a new generation of scientists.

Our working group forms part of the cryosphere workpackage of the HGF Alliance. We analyse SAR data in regard to changes in ice dynamics, volume and mass changes as well as glacier extent using SAR coherence. Our aim is to contribute to an improved system understanding merging the information terieved from earth observation with other data sources. For this purpose we develop algorithms based on data set from ALOS PALSAR and TerraSAR-X/TanDEM-X that provide respective products.

 

Project team

Saurabh Vijay, Melanie Rankl, Thorsten Seehaus, Matthias Braun

 

Full HGF-EDA Website

velocity_columbia

The working group of Matthias Braun contributes to the HGF Nachwuchsforschergruppe of Dr. Kathrin Höppner at DLR DFD by supervising a MSc and PhD student. The aim of the PhD project is to derive quantitative glaciological variables from large-scale processing of the entire ERS-1/2 archive over the Antarctic Peninsula stored at DLR. The ERS archive was acquired between 1991 and 2011 during various acquisition campaigns at the German Antarctic Receiving Station (GARS) near the Chilean base O’Higgins. The working group at FAU provides its knwoeldge and expertise on SAR processing as well as algorithms where required.

Development of an Online Course Geoinformation and Remote Sensing for Magisterial Students (VHB)

In a consecutive course program, we offer a comprehensive range of lectures and in particular computer-aided seminars on the practical handling of GIS and remote sensing. These events include both basic and advanced courses in GIS, remote sensing and digital image processing. Advanced modules are available in English if required and enable students to deepen their knowledge through to a specialization in the field of computer science. We are at your disposal for questions regarding course planning as well as final papers (Bachelor / Master). Bachelor’s theses require a visit to the basic knowledge courses; In particular, we recommend that you attend one or more of the specialization courses for master’s theses. Our teaching is specifically supported by eLearning materials. Please visit our GIS-Wiki Homepage.


See also: GIS-Labor, GISwiki

We maintain a close network with various national and international research institutions and private companies. We are happy to assist you in finding a suitable internship or advise you on studying abroad. As with the final thesis, it is important that you already have a good base of GIS and remote sensing knowledge to ensure a mutually beneficial stay for both parties.

2018

Grießinger, J., Langhamer, L., Schneider, C., Saß, B. L., Steger, D., Skvarca, P., Braun, M. H., Meier, W. J.H., Srur, A. M. and Hochreuther, P.  Imprints of Climate Signals in a 204 Year δ18O Tree-Ring Record of Nothofagus pumilio From Perito Moreno Glacier, Southern Patagonia (50°S), Front. Earth. Sci., 6, doi:10.3389/feart.2018.00027.

Friedl, P., Seehaus, T. C., Wendt, A., Braun, M. H., and Höppner, K.: Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula, The Cryosphere, 12, 1347-1365, https://doi.org/10.5194/tc-12-1347-2018, 2018.

Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039-2050, https://doi.org/10.5194/tc-12-2039-2018, 2018.

Seehaus, T., Cook, A. J., Silva, A. B., and Braun, M.: Changes in glacier dynamics in the northern Antarctic Peninsula since 1985, The Cryosphere, 12, 577-594, https://doi.org/10.5194/tc-12-577-2018, 2018.

Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., Braun, M.H. Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data. Remote Sens. 2018, 10, 188.

Weidemann, S.S., Sauter, T., Malz, P., Jaña, R., Arigony-Neto, J., Casassa, G., and Schneider C. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling. Front. Earth Sci. 6:81. doi: 10.3389/feart.2018.00081

Meier, W.J.H., Grießinger, J., Hochreuther, P., and Braun, M.H. An Updated Multi-Temporal Glacier Inventory for the Patagonian Andes With Changes Between the Little Ice Age and 2016. Front. Earth Sci. 6:62. doi: 10.3389/feart.2018.00062

Iribarren, P., Kinney, J., Schaefer, M., Harrison, S., Wilson, R., Segovia, A., Mazzorana, B., Guerra, F., Farías, D., Reynolds, J., Glasser, NF.  (2018). Glacier protection laws Potential conflicts in managing glacial hazards and adapting to climate change. Ambio. https://doi.org/10.1007/s13280-018-1043-x

Hein N, Brendel MR, Feilhauer H, Finch OD, Löffler J (online first). Egg size vs. egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae). Polar Biology.

Rocchini, D., Luque, S., Pettorelli, N., Bastin, L., Doktor, D., Faedi, N., Feilhauer, H., Féret, J.B., Foody, G.M., Gavish, Y., Godinho, S., Kunin, W.E., Lausch, A., Leitão, P.J., Marcantonio, M., Neteler, M., Ricotta, C., Schmidtlein, S., Vihervaara, P., Wegmann, M., Nagendra, H. Measuring β-diversity by remote sensing: a challenge for biodiversity monitoring. Methods in Ecology and Evolution 9, 1787-1798.

Skowronek, S., Stenzel, S., Feilhauer, H. Invasive Arten aus der Vogelperspektive – wie kann Fernerkundung zur Erfassung invasiver Pflanzen in Deutschland beitragen?. Natur und Landschaft 93, 434-438.

Garzon-Lopez, C.X., Hattab, T., Skowronek ,S., Aerts, R., Ewald, M., Feilhauer, F., Honnay, O., Decocq, G., Van De Kerchove, R., Somers, B., Schmidtlein, S., Rocchini, D., Lenoir, J. The DIARS toolbox: a spatially explicit approach to monitor alien plant invasions through remote sensing. Research Ideas and Outcome 4, e25301.

Ewald, M., Skowronek, S., Aerts, R., Dolos, K., Lenoir, J., Nicolas, M., Warrie, J., Hattab, T., Feilhauer, H., Honnay, O., Garzón-López, C., Decocq, G., Van De Kerchove, R., Somers, B., Rocchini, D., Schmidtlein. Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biological Invasions 8, 2257-2271.

Feilhauer, H., Schmid, T., Faude, U., Sánchez-Carillo, S., Cirujano, S. Are remotely-sensed traits suitable for ecological analysis? A case study of long-term drought effects on Leaf Mass per Area of wetland vegetation. Ecological Indicators 88, 232-240.

Ewald, M., Aerts, R., Lenoir, J., Fassnacht, F.E., Nicolas, M., Skowronek, S., Piat, J., Honnay, O., Garzón-López, C.X., Feilhauer, H., Van De Kerchove, R., Somers, B., Hattab, T., Rocchini, D., Schmidtlein, S. LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote Sensing of Environment 211, 13-25.

Skowronek, S., Van De Kerchove, R., Rombouts, B., Aerts, R., Ewald, M., Warrie, J., Schiefer, F., Garzon-Lopez, C., Hattab, T., Honnay, O., Lenoir, J., Rocchini, D., Schmidtlein, S., Somers, B., Feilhauer, H. Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation 68, 61-72.

Magiera, A., Feilhauer, H., Waldhardt, R., Wiesmair, M., Otte, A. Mapping plant functional groups in subalpine grassland of the Greater Caucasus. Mountain Research and Development 38, 63-72.

Rocchini, D., Bacaro, G., Chirici, G., Da Re, D., Feilhauer, H., Foody, G.M., Galluzzi, M., Garzon-Lopez, C.X., Gillespie, T.W., He, K.S., Lenoir, J., Marcantonio, M., Nagendra, H., Ricotta, C., Rommel, E., Schmidtlein, S., Skidmore, A.K., Van De Kerchove, R., Wegmann, M., Rugani, B. Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity studies. Ecological Indicators 85, 983-990.

2017

Fürst, J. J., Gillet-Chaulet, F., Benham, T. J., Dowdeswell, J. A., Grabiec, M., Navarro, F., Pettersson, R., Moholdt, G., Nuth, C., Sass, B., Aas, K., Fettweis, X., Lang, C., Seehaus, T. and Braun, M. (2017): Application of a two-step approach for mapping ice thickness  to various glacier types on Svalbard, The Cryosphere, 11(5), 2003–2032, doi:10.5194/tc-11-2003-2017.

Rankl, M., Fürst, J. J., Humbert, A., and Braun, M. H.: Dynamic changes on the Wilkins Ice Shelf during the 2006–2009 retreat derived from satellite observations, The Cryosphere, 11, 1199-1211, https://doi.org/10.5194/tc-11-1199-2017, 2017.

Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949-970, https://doi.org/10.5194/tc-11-949-2017, 2017.

Vijay, S., Braun, M. Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position. Remote Sens. 2017, 9, 635.

Wastlhuber, R., Hock, R., Kienholz, C., Braun, M. Glacier Changes in the Susitna Basin, Alaska, USA, (1951–2015) using GIS and Remote Sensing Methods. Remote Sens. 2017, 9, 478.

Vijay, S.; Braun, M. Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens. 2016, 8, 1038.

Sierra, C.A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez, V., Reu, B., Feilhauer, H., Anáya, J., Armenteras, D., Benavides, A.M., Buendia, C., Duque, A., Estupiñan, L.M., González, C., González, S., Jimenez, R., Kraemer, G., Londoño, M.C., Orrego, S.A., Polanía, J., Posada, J.M., Ruíz, D., Skowronek. S. Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy 76, 40-49.

Magiera, A., Feilhauer, H., Waldhardt, R., Wiesmair, M., Otte, A. Fernerkundungsbasierte Erfassung der Vegetationszusammensetzung und Produktivität von Grünlandbeständn im großen Kaukasus. Berichte der Reinhold-Tüxen-Gesellschaft 28, 65-81.

Hattab, T., Garzón-López, C.X., Ewald, M., Skowronek, S., Aerts, R., Horen, H., Brasseur, B., Gallet-Moron, E., Spicher, F., Decocq, G., Feilhauer, H., Honnay, O., Kempeneers, P., Schmidtlein, S., Somers, B., Van De Kerchove, R., Rocchini, D., Lenoir, J. A unified framework to model the potential and realized distributions of invasive species within the invaded range. Diversity and Distributions 23, 806-819.

Magiera, A., Feilhauer, H., Waldhardt, R., Wiesmair, M., Otte, A. Modelling biomass of mountainous grasslands by including a species composition map. Ecological Indicators 78, 8-18.

Aerts, R., Ewald, M., Nicolas, M., Piat, J., Skowronek, S., Lenoir, J., Hattab, T., Garzón-López, C.X., Feilhauer, H., Schmidtlein, S., Rocchini, D., Decocq, G., Somers, B., Van De Kerchove, R., Denef, K., Honnay, O. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Frontiers in Plant Science 8, 179.

Skowronek, S., Asner, G.P., Feilhauer, H. Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecological Informatics 37, 66-76.

Skowronek, S., Ewald, M., Isermann, M., Van de Kerchove, R., Lenoir, J., Aerts, R., Warrie, J., Hattab, T., Honnay, O., Schmidtlein, S., Rocchini, D., Somers, B., Feilhauer, H. Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions 19, 239-254.

Feilhauer, H., Somers, B., van der Linden, S. Optical trait indicators for remote sensing of plant species composition: predictive power and seasonal variability. Ecological Indicators 73, 825-833

2016

Seehaus, T., Marinsek, S., Skvarca, P., van Wessem, J.M., Reijmer, C.H., Seco, J.L., Braun, M., 2016. Dynamic Response of Sjögren Inlet Glaciers, Antarctic Peninsula, to Ice Shelf Breakup Derived from Multi-Mission Remote Sensing Time Series. Front. Earth Sci. 4. doi:10.3389/feart.2016.0006

Falk, U., Gieseke, H. Kotzur, F., Braun, M. (2016): Monitoring snow and ice surfaces on King George Island, Antarctic Peninsula, with high-resolution TerraSAR-X time series. Antarctic Science 28(2), 135-149, DOI: http://dx.doi.org/10.1017/S0954102015000577, 15 pages, suppl. material: http://dx.doi.org/10.1594/PANGAEA.853954.

Fürst, J.J., Durand, G., Gillet-Chaulet. Tavard, L., Rankl, M., Braun, M., Gagliardini, O. (2016): The safety band of Antarctic ice shelves. Nature Climate Change, doi:10.1038/nclimate2912.

Rankl, M. & Braun, M. (2016): Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Annals of Glaciology 51(71), 10.3189/2016AoG71A024.

Thonfeld, T., Feilhauer, H., Braun, M., Menz, G. Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data. International Journal of Applied Earth Observation and Geoinformation, 131-140. 2016

Mack, B., Roscher, R., Stenzel, S., Feilhauer, H., Schmidtlein, S., Waske, B. Mapping raised bogs with an iterative one-class classification approach. ISPRS Journal of Photogrammetry and Remote Sensing 120, 53-64.

Feilhauer, H., Doktor, D., Schmidtlein, S., Skidmore, A.K. Mapping pollination types with remote sensing. Journal of Vegetation Science 27, 999-1011.

Lausch, A., Bannehr, L., Beckmann, M., Boehm, C., Feilhauer, H., Hacker, J.M., Heurich, M., Jung, A., Klenke, R., Neumann, C., Pause, M., Rocchini, D., Schaepman, M.E, Schmidtlein, S., Schulz, K., Selsam, P., Settele, J., Skidmore, A.K., Cord, A.F. Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecological Indicators 70, 317-339.

Magiera, A., Feilhauer, H., Tephnadze, N., Waldhardt, R., Otte, A. Separating reflectance signatures of shrub species – A case study in the Central Greater Caucasus. Applied Vegetation Science 19, 304-315.

Wiesmair, M., Feilhauer, H., Magiera, A., Waldhardt, R., Otte, A. Estimating vegetation cover from high resolution NDVI-data to assess grassland degradation in the Georgian Greater Caucasus. Journal of Mountain Science 36, 56-65.

 

2015

Seehaus, T., Marinsek, S., Helm, V., Skvarca, P., Braun, M., 2015. Changes in ice dynamics, elevation and mass discharge of Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula. Earth Planet. Sci. Lett. 427, 125–135. doi:10.1016/j.epsl.2015.06.047

Klügel, T., Höppner, K., Falk, R., Kühmstedt, E., Plötz, C., Reinhold, A., Rülke,A., Wojdziak, R., Balss, U., Diedrich, E., Eineder, M., Henniger, H., Metzig, R., Steigenberger, P., Gisinger, C., Schuh, H., Böhm, J., Ojha, R., Kadler, M., Humbert, A., Braun, M., Sun, J.(2015): Earth observation in Antarctica – the German Antarctic Receiving Station GARS O´higgins. Polar Record 51 (6), 590—610,DOI:http://doi.org/10.1017/S0032247414000540.

Hein, N., Feilhauer, H., Löffler, J., Finch, O.D. Elevational variation of reproductive traits in five Pardosa (Lycosidae) species. Arctic, Antarctic, and Alpine Research 47, 67-73.

Feilhauer, H., Asner, G.P., Martin, R.E.. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment 164, 57-65.

2014

Rankl, M., Kienholz, C., and Braun, M.: Glacier changes in the Karakoram region mapped by multimission satellite imagery, The Cryosphere, 8, 977-989, https://doi.org/10.5194/tc-8-977-2014, 2014.

Osmanoglu, B.,Navarro, F. J., Hock, R., Braun, M., Corcuera, M. I. (2014): Surface velocities and mass balance of Livingston Island ice cap, Antarctica. The Cryosphere 8, 1807-1823.

Arigony-Neto, J., Skvarca, P., Marinsek, S., Braun, M., Humbert, A., Wilson Mendes Júnior, C:, Jaña, R. (2014): Monitoring glacier changes on the Antarctic Peninsula. In: Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H. (Eds.): Global Land Ice Measurements from Space, Springer Paxis Books, Geophysical Sciences.

Manakos, I., and Braun, M. (eds.) (2014): Land Use Land Cover Mapping in Europe. Praxis & Trends. Series: Remote Sensing and Digital Image Processing, Vol. 18. 441 p. 112 illus., 79 illus. in color. Springer Verlag. Access via Springer here.

Feilhauer, H., Dahlke, C., Doktor, D., Lausch, A., Schmidtlein, S., Schulz, G., Stenzel, S. Mapping the local variability of Natura 2000 habitats with remote sensing. Applied Vegetation Science 17, 765-779.

Hein, N., Feilhauer, H., Finch, O.D., Schmidtlein, S., Löffler, J. Snow-cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde 68, 157-172.

Stenzel, S., Feilhauer, H., Mack, B., Metz, A., Schmidtlein, S. Remote sensing of scattered Natura 2000 habitats using a one-class classifier. International Journal of Applied Earth Observation and Geoinformation 33, 211-217.

Brüser, K., Feilhauer, H., Schellberg, J., Linstädter, A., Oomen, R.J., Ruppert, J.C., Ewert, F. Discrimination and characterization of management systems in semi-arid rangelands of South Africa using RapidEye time series. International Journal of Remote Sensing 35, 1653-1673.

2013

Osmanglu, B., Braun, M., Hock, R., Navarro, F.J. (2013): Surface velocity and ice discharge of glaciers on King George Island, Antarctica. Annals of Glaciology 54(63), 111–119, doi:10.3189/2013AoG63A517.

Möller, M., Finkelnburg, R., Braun, M., Scherer, D., Schneider, C. (2013): Variability of the climatic mass balance of Vestfonna ice cap (northeastern Svalbard) in the period 1979/1980 – 2010/2011. Annals of Glaciology 54(63), 254–264.

Schmidtlein S, Faude U, Rössler O, Feilhauer H, Ewald J, Meyn A, Schmidt J (2013). Differences between recent and historical records of upper species limits in the northern European Alps. Erdkunde 67, 345-354.

Muenchow, J., Feilhauer, H., Bräuning, A., Rodríguez, E.F., Bayer, F., Rodríguez, R.A., von Wehrden, H. Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability. Journal of Vegetation Science 24, 1154-1166.

Rocchini, D., Delucchi, L., Bacaro, G., Cavallini, P., Feilhauer, H., Foody, G.M., He, K.S., Nagendra, H., Porta, C., Ricotta, C., Schmidtlein, S., Spano, L.D., Wegmann, M., Neteler, M. Calculating landscape diversity with information-theory based indices – a GRASS GIS approach. Ecological Informatics 17, 82-93.

Magiera, A., Feilhauer, H., Otte, A., Waldhardt, R., Simmering, D. Relating canopy reflectance to the vegetation composition of mountainous grasslands in the Greater Caucasus. Agriculture, Ecosystems and Environment 177, 101-112.

Feilhauer, H., Thonfeld, F., Faude, U., He, K.S., Rocchini, D., Schmidtlein, S. Assessing floristic composition with multispectral sensors – a comparison based on monotemporal and multiseasonal field spectra. International Journal of Applied Earth Observation and Geoinformation 21, 218-229.

Rocchini, D., Foody, G.M., Nagendra, H., Ricotta, C., Anand, M., He, K.S., Amici, V., Kleinschmit, B., Förster, M., Schmidtlein, S., Feilhauer, H., Ghisla, A., Metz, M., Neteler, M. Uncertainty in ecosystem mapping by remote sensing. Computers and Geosciences 50, 128-135.

2012

Goodwin, K., Loso, M.G., Braun, M. Glacial Transport of Human Waste and Survival of Fecal Bacteria on Mt. McKinley’s Kahiltna Glacier, Denali National Park, Alaska. Arctic, Antarctic and Alpine Research 4(4), 432-445.

McNabb, R.W., Hock, R., O’Neel, S., Rasmussen, L.A., Ahn, Y., Braun, M., Conway, H., Herreid, S., Joughin, I., Pfeffer, W.T., Smith, B.E., Truffer, M. Using surface velocities to calculate ice thickness and bed topography: A case study at Columbia Glacier, Alaska. Journal of Glaciology 58(212), doi:10.3189/2012JoG11J249.

Burgess, E.W., Forster, R.R., Larsen, C.F., Braun, M. Surge dynamics on Bering Glacier, Alaska, in 2008-2011. The Cryosphere 6, 1251-1262. doi:10.5194/tc-6-1251-2012.

Feilhauer, H., He, K.S, Rocchini, D. Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI. Remote Sensing 4, 2057-2075.

2011

Braun, M., Pohjola, V.A., Pettersson, R., Moeller, M., Finkelnburg, R., Falk, U., Scherer, D., Schneider, C. Glacier frontal position changes of Vestfonna (Nordaustlandet, Svalbard). Geografiska Annaler 93(4), 301-310, doi:10.1111/j.1468-0459.2011.00437.x.

Möller, M., Möller, R., Beaudon, E., Mattila, O.-P., Finkelnburg, R., Braun, M., Luks, B., Jonsell, U., Scherer, D., Schneider, C. Snowpack characteristics of Vestfonna and De Geerfonna (Nordaustlandet, Svalbard) – a spatiotemporal analysis based on multiyear snow-pit data. Geografiska Annaler 93(4), 273-285, doi:10.1111/j.1468-0459.2011.00440.x.

Quincey, D.J., Braun, M., Bishop, M.P., Hewitt, K.,Luckman, A. Karakoram glacier surge dynamics. Geophysical Research Letters38(L18504), doi:10.1029/2011GL049004.

Möller, M. Finkelnburg, R., Braun, M., Hock, R., Jonsell, U., Pohjola, V., Scherer, D., Schneider, C. (2011): Climatic mass balance of the ice cap Vestfonna, Svalbard – a spatially distributed assessment using ERA-Interim and MODIS data. Journal of Geophysical Research116(F03009), doi:10.1029/2010JF001905.

Rückamp, M., Braun, M., Suckro, S., Blindow, N. (2011): Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade . Global and Planetary Change 79, 99-109, doi:10.1016/j.gloplacha.2011.06.009.

Schneider, C., Scherer, D., Braun, M. Auswirkungen des Klimawandels auf die Kryosphäre in den Polargebieten. Geographische Rundschau 63(12), 12-19.

Prof. Dr. Matthias Braun

  • Address:
    Wetterkreuz 15
    Room 02.127
    91058 Erlangen
  • Phone number: +49 9131 85-22015
  • Email: matthias.h.braun@fau.de
  • Sprechstunde:
    nur nach Vereinbarung
  • GISwiki